
C I R C U L A T I O N  F L O W  O F  A N  I D E A L  L I Q U I D  N E A R  W A L L S  

I .  A.  B e l o v  UDC 532.517.43 

w 1. It is well  known that in the ca se  of the flow of acce l e r a t ed  s t r e a m s  nea r  s t a t ionary  boundar ies  the 
effect  of v i scos i ty  on the flow field appea r s  at v e r y  sma l l  d is tances  f r o m  the boundar ies  of the region being 
d i scussed .  In a s ignif icant  pe r t  ton of the region the flow may  be taken to be  ideal and i r ro ta t iona l  or  ro ta t ional  
with the s t r e n g t h  of the vor tex  de te rmined  by the conditions of fo rmat ion  of the s t r e a m  fa r  f r o m  the boundar ies  
of the region.  

Let  us cons ider  in the Car t e s i an  coordinate  s y s t e m  xoy a two-dimens iona l  flow of an incompress ib le  
liquid nea r  solid walls  or  the s y m m e t r y  plane x = 0  and y = 0  with the point of flow stagnation being x = y = 0 .  Let 
xr and y~  be the specif ied c r o s s  sect ions  with fixed boundary conditions subject  to determinat ion.  Let us seek  
a solution for  the flow veloci ty  components  in the f o r m  

v ----- - -  F ( y ) O ' ( x ) ,  u =- F'(g)qP(x),  (1.1) 

where  v and u a r e  the ve loc i ty  components  along the n o r m a l  and along the tangent to the su r face  y =0, r e f e r r e d  
to the c h a r a c t e r i s t i c  ve loci ty  at the boundary y~.  The obvious boundary conditions for  the p rob lem under d i s -  
cussion axe 

v(x, 0) = 0, F(0) = 0; u(0, y) = 0; r  = 0. (1.2) 

It follows f r o m  (1.1) that  with the boundary conditions (1.2) the veloci ty  flux through the su r f ace  bounding the 
region under d iscuss ion  is equal to ze ro  for  any values of the functions F and r at the boundar ies  y~  and x~.  
We a s s u m e  that max[v(x, Y~o)I=max[u(x~, Y)[. F r o m  this we obtain f r o m  (1.1), excluding the conditions F(Yco)= 

(x~) = 0, which give t r i v i a l  solut ions,  

~) (x~) = F (y.)  r  (1.3) 

where  

r  = r ((Ia', F'),~ ---- max ((1)', F'). 

Without losing the genera l i ty  of the d iscuss ions ,  we adopt x~ =yr162 = 1, where  the length of the side of the 
square  x, y ~ [0,11 is used as  the c h a r a c t e r i s t i c  length. The condition of the absence  of a vor tex  in the flow is 
wr i t ten  in the f o r m  

F O ( F " / F  + (I)"/cI)) = O. 

Excluding the t r iv ia l  solut ions F =~ =0, we obtain 

F " / F  = -- r = C. (i .4) 

For  C = 0 t he r e  follows f r o m  (1.4) the well-known solution for  a un i fo rm flow in the vicini ty  of the s tagna-  
tion point [1] F = C l y ,  ~ = C ~ ;  v = - b y ,  u=bx ,  where  CI=F(1 ) ;  C2=~ (1); and b=C1C 2 is the gradient  of the veloci ty  
at the s tagnat ion point. 

For  C < 0 the solutions (1.4) have the f o r m  F = C  1 sin q - C y ,  @ =C2 sinh 4-'2---Cx, where  C l = F ( 1 ) / s i n  q - C  
and  C 2 = r  (1 ) / s i nh  

In this case  we obtain f r o m  (1.3) the following equation for  the de te rmina t ion  of the values  of q - C :  

sin V --  C. ch 1 / - -  C z m / ( s h  1 / - -  C.  cos V - -  Cym) = t ,  
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where  Xm and Ym a re  the c r o s s  sect ions at which 4,,=r m and F' = F ' m ,  respec t ive ly .  We note that the roots  of 
this equation ag ree  in s ize  with the roo ts  of the equation ~ , m / F , m = l  in the case  in which F(1) =r I-Iaving 
adopted in the following Cl=a , where  a =F(1) =r we de te rmine  the constants ,]  - C  and C2 as 

I / r -  C ~-(--l)k(2k -5 1)~/2, C~ -~ (--l)ka/sh(2k -5 i)~/2, k = 0, t . . . . .  

which sa t i s fy  (1.3) to a high degree  of accuracy  for k >  0. For  se lected values of ,] - C ,  C1, and C2 the solutions 
for  F and r a r e  of the fo rm  

F = (--i)ka sin(2k -5 t) (n/2)y, ~P ---- a sh(2k -~ t) (n/2)x/sh(2k -5 t)n/2. 

Similar  express ions  a r e  obtained for C > 0: 

F = a sh(2k -5 t)(g/2)y/sh (2k -5 t)u/2, ~ = (--l) k asin(2k -5 t)(n/2)x. 

The s t r e a m  function of the flow in question has the fo rm  

---- (--  t)ka~ sh(2k -5 i)(~/2)z sin(2k -5 i)(~/2)~/sh(2k -5 t)n/2, 
z----x, t=---Y, C < 0 ;  z----y, ~---z,  C > 0  

f o r  C ~0.  We note that the sums of the solutions of the type indicated above for C =0 and C< > 0 a r e  also solu-  
t ions of Eq. (1.4) with the boundary conditions (1.2) and (1.3). Let us investigate par t icu lar  solutions of (1.4) 
for  C ~ 0. The boundary conditions on the sur faces  x = y  =1 on the assumption that a 2=a~ =tanh (2k § l) -~-f 
(2k-5 i) ~ -  a re  of the fo rm  

v(x, t) ---- --  ch(2k -5 l)(~/2)x/ch (2k -5 l)rd2, u(x, i) -~ 0, 
v(t, y) ---- (--l)k+ 1 sin (2k -5 t)(~/2)y, 

u(t, y) ---- (--i)~ th (2k -5 i)(~/2) cos (2k -5 t)(n/2)y 

for  sufficiently la rge  values of k and for  C < 0, where  the maximum veloci ty at the boundary y = l  is v(1, 1) =1; 
and the ra t io  of v(1, 1) to the minimum veloci ty on the same boundary v(0, 1) is equal to cosh (2k +l)~r/2. Simi- 
lax re la t ions  a r e  obtained for  C > 0. Having taken the same value for a 2 as in the preceding case ,  the boundary 
conditions on the sur faces  x =y = 1 a r e  wri t ten in the f o r m  

v(x, I) = (--t)k+ 1 th(2k + i)(~/2) cos (2k -5 t)(~/2)x, 
u(x, l) ---- (--l) h sin (2k -5 l)(g/2)x, v(l, y) ---- 0, 

u(1, y) = ch (2k -5 t)(~/2)y/ch (2k -5 t)~/2 

for  sufficiently large  values of k, where  the maximum veloci ty  on the boundary x = l  is u(1, 1) =1, and the ra t io  
of u(1, 1) to the minimum veloci ty  on this boundary u (1, 0) is equal to cosh (2k +1)7r/2. 

It follows f r o m  a compar i son  of the solutions obtained that when C < 0 the veloci t ies  v(x, 1), u(x, 1), 
u(1, y), and v(1, y) a r e e q u a l  in absolute value to the veloci t ies  u(1, y), v(1, y), v(x, 1), and u(x, 1), respec t ive ly ,  
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i .e . ,  the  solut ion fo r  C <  0 in the  r eg ion  x, y ~  [0, i ]  is  coupled  with the solut ion fo r  C > 0  in the r eg ion  
x E  [ l , 2 ] , y E  [0, l ] , a n d f o r  C > 0 i n t h e r e g i o n  x, y ~  [0, l ] - w i t h t h e  solut ion for  C < 0 in the r eg ion  
x ~ [l, 21, y ~ [0, l] .  The poss ib i l i t y  of  coupl ing  of the solut ions  is p rov ided  for  by  the cho ice  as  the bounda ry  
condi t ions  on the s u r f a c e s  x = y = l  of the pe r iod i c i t y  condi t ions  of the  flow, whose  a p p e a r a n c e  is c aused  by the 
sol id  wall  o r  the s y m m e t r y  plane (the plane of in te rac t ion  of  the  two flows) loca ted  benea th  the flow. This  will  
be  the plane x = 2  fo r  the  r eg ion  x, y ~ [0, i ! ;  fo r  the r e g i o n  x ~ [l, 2], y E [0, i ) -  the y = 2  plane,  and so  on. 
When a 0 ~ 0 and a k =0 ( k = l ,  2 . . . .  ) (Fig. la) ,  the flow in the r eg ion  under  d i s c u s s i o n  is a c c o m p l i s h e d  without 
the f o r m a t i o n  of  c i r c u l a t i on  zones  n e a r  the  wa l l s ,  and when a 0 =0 and a k r 0 ( k = l ,  2, ... ) - with c i r cu la t ion  
zones  (the ~b =0 l ines  i n t e r s e c t  with the s u r f a c e s  x = y = l  at the points  %, Y0 = 2 n / ( 2 k  +1); %,  y 0 - 1 ,  k = l ,  2 . . . .  
n =1,  2, . . . ,  k). The  n u m b e r  of  c i r cu l a t i on  zones  c o r r e s p o n d s  to the s e l e c t e d  value  of k; when C < 0 and k = l  
(Fig. lb) the c i r cu la t ion  zone  for  the  flow in the r eg ion  x, y E [0, i l  is o r i en ted  a long the  wal l  y =0,  and when 
C > 0 and k = l  (Fig. l c ) ,  the  c i r cu l a t i on  zone for  the  f low in this  s a m e  r eg ion  is o r i en ted  along the n o r m a l  to 

the wall  y = 0. 

w Let the vo r t i c i t y  in the  f low of an ideal  l iquid be  n o n z e r o  in the  r eg ion  x, y ~ [0, l ] .  In the p r e s e n t  
fo rmu la t i on  the amount  o f  v o r t i c i t y  is d e t e r m i n e d  by  the ef fec ts  of  the v i s c o s i t y  o f  the l iquid Outside the bound-  
a r i e s  of  the r eg ion  under  d i scuss ion .  As  e a r l i e r  for  i r ro t a t i ona l  f low, adopt ing dependences  of  v and u of  the 
f o r m  (1.1), which  gua ran t ee  fu l f i l lment  of  the Stokes '  t h e o r e m ,  we obtain f r o m  the  v o r t i c i t y  t r a n s p o r t  equat ion 

(FF ' "  - -  F ' F " ) / F F '  = ((I)62'" - -  r :- C. (2.1) 

The solutions of (2.1) in the case of the boundary conditions 

F(0) = (I)(0) = 0, F(l) = (0(t) = a, F '(I)  = dp'(i) ----- d (2.2) 

w e r e  inves t iga ted  in [2] fo r  C <> 0. We wil l  show that  in the gene ra l  c a s e  one should  take  account  o f  the solut ions  
which d e s c r i b e  c i r cu la t ion  flows of  a l iquid in the  r eg ion  under  d i s cus s ion  in addit ion to those  obta ined in [2]. 
When C = 0, it fo l lows f r o m  (2.1) that  

e~ '~ = C,. + Ci(p ~, C2 = d2 - -  C1 a~, C1 = q~"(t), (~ ----- F, (:1). 

When P = C l a  9/ (Cla  ~-d2)X 0, the  solut ion for  r is o f  the f o r m  

(?/a = z ,  a = d, P = 0; 

(~/a = y ( C t a  2 - -  d2)/Cta~.sin ] / - - C i z ,  P > 0; (2.3) 

r = ] / (Cia2- -~) /Cla2"sh  V Ctz, P ~ O, z ~--- x, y, 

i .e . ,  when C1_<0 and P >  0, we have an unbounded se t  of r e a l  so lu t ions  for  ~0, and when C1_>0 and P <  0, an 
infinite n u m b e r  of  r e a l  so lu t ions  is a t ta ined only  when d2_  > Cla 2. The quant i ty  C 1 depends on the  r a t io  d / a  = 

q~' (1)/(p (1), and fo r  the condi t ions  (2.2) it is d e t e r m i n e d  f r o m  

d "z= - -  Ci a2 ctg ~ 3 / - -C1,  P ~ 0, 

d ~ = Ci a~ cth ~ 3/Ct----~ P < 0. (2.4) 

ff r (1) =d is taken  equal to z e r o ,  then when P >  0 the r o o t s  of  Eq. (2.4) will  be  4-L-~ 1 = (-1)k(2k + 1)7r/2, 
k = 0 ,  1 . . . .  fo r  nega t ive  va lues  of C1; when P <  0 and d = 0 ,  t he re  a r e  no r e a l  r o o t s  4~1  of  Eq. (2.4) on the  pos i -  
t ive p a r t  of the n u m b e r  axis .  When d / a  =1,  q ' - C I = 0 ,  4.4934, 7.7253, 10.9041, 14.0662, and so on, but 4"C'1=0. 
When C1=0,  the  solut ion (2.4) g ives  d/a =1,  which c o r r e s p o n d s  to the  c a s e  ana lyzed  above  of  the  flow of an i r -  
ro t a t iona l  s t r e a m  in the ne ighborhood  of  the  s tagnat ion  point. 

When d2< Cla 2, we  have a c o m p l e x  solut ion fo r  q~. Setting q - ~ l = p + i q ,  we obtain  f r o m  (2.4) two r e a l  equa-  
t ions  fo r  p and q: 

p c thp  -}- p t h p  = q t g q  - -  q c t g q  = Ca, (2.5) 

w h e r e  C 3 is s o m e  cons tan t  which d e t e r m i n e s  the value  of  the  r a t i o  d / a  fo r  each  pa i r  of  r o o t s  (p, q). 

I t  is obvious  f r o m  (2.5) that  one  of  the  va lues  of the n u m b e r  p c o r r e s p o n d s  to k d i f ferent  values  of  the 
n u m b e r  q. Fo r  l a r g e r  va lues  of p the  cons tan t  C 3 --~ 2p, and q ---(2k + 1)~r/2, k = 0, 1 . . . . .  Le t  us r e w r i t e  (2 .5) in  
the f o r m  

d/a -- q/tg q (d/a ~ 0). d/a-~ q/tg q (d/a ~ 0); th ~ p -- d/a th~p = - -  "d/a~-qtgq qtgq 

It fol lows f r o m  the  las t  r e l a t ions  that  so lut ions  (p, q) occu r  for  d/a<> 0 and tan  q < 0 with q taken f r o m  the 
r a n g e :  
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q:(d/a)ltg q < q < ~ (d/a) tg q; :~ (d/a) tg q < q < ~ (d/a)/tg q. 

When d/a = + t n/2 < q < 2; 37r/2 < q < 4.9, 2.8 < q <Tr, 6.12 < q < 2~r, and so on. Since 0_~p<oo, let  us de t e rmine  
the boundar ies  with r e s p e c t  to d/a of the exis tence  of complex  solutions for  ~p. When p--- 0% d / a  = • q(tan~l +1)/  
(2 tan q); when p = 0  d / a  =:~q/ tan  q. If one takes  q = 0 ,  t h ~  when p - . o %  d/a =:~ 0.5, and when p = 0 ,  d/a = •  
The l a s t  l imi t  c o r r e s p o n d s  to C 1 = 0, and consequent ly  the condition d~/a 2 < C i of the ex is tence  of complex  solu-  
t ions of (2.3) is not fulfi l led. It is poss ib le  to ob ta in  that  in this ca se  the quantity p is located in the r ange  
0 . 7 2 5 _ p  <oo. 

The solution for  q~ when q ' ~ l = p + i q  is of the f o r m  

r -= [(Ap + Bq) + i(Bp --  Aq) ] sh pz cos qz + [(Aq --  Bp) + i(Ap + Bq) ] ch pz sin qz, 

where  

(f- q~) V ~ ' (f -- q~) g~ ' 
a = ae/a * - -  p2 + q*, ~ = ~2pq. 

We note  that just  as  for  i r ro ta t iona l  flow the sums  of the solutions in question a r e ,  in the ea se  of r e a l  CI<  > 0, 
C I = 0  , and complex  va lues  of C1, solutions of Eq. (2.3) with the boundary conditions 42.2). Let us invest igate  
pa r t i cu l a r  solutions of (2.3). Having taken a2=sin2-~-2--C'1t/-q---~ll, we obtain 

v = -  sin 3/-c---~y cos 3 / - c ' ; ~ ,  u = sin 3 / = c l x  cos 3 / - c l y  

for  C 1 < 0, where  C 1 = Ct(a ,  d) is found f r o m  42.4). If d = 0, then 4 - C~ = 4-1)k(2 k + 1) ~'/2, k = 0, 1 . . . . .  and then 
for  different  values  of k the flow in the region x, y ~ [0, 11 under d iscuss ion  r e p r e s e n t s  a flow assoc ia t ed  with 
the turning by a r ight  angle of a nonuniform s t r e a m  or ien ted  along the n o r m a l  to the plane y = 0  without the f o r -  
mat ion of c i rcula t ion  zones (k =0, Fig. 2a) and with c i rcula t ion zones (k =1, Fig. 2b; k =2, Fig. 2c). The ap-  
pea rance  of c i rcu la t ion  zones  within the b o r d e r s  of the region under d iscuss ion,  just  as for  i r ro ta t iona l  flow, 
which is caused by the per iod ic i ty  conditions of the flow on the boundar ies  x = y =  1. The number  of c i rcula t ion  
zones (vort ices)  and the d is tance  between the cen te r s  of adjacent  vo r t i ces  a r e  equal to k 2 and 2/(2k +1), r e -  
spect ively;  the d is tance  between the planes x, y = 0  and the cen te r  of the vor t ex  n e a r e s t  to the stagnation point 
is equal to x, y = l / ( 2 k  +1). 

Fo r  CI>  0 and d2> Cla 9-, having taken a2=sinh2~f~l /4-~l ,  we obta in  

v = - -  sh 3/Cry ch 3/C,x,  u = ch 3 /C ,y  sh 3/C,x,  

where  C l---Cl(a, d) is found f r o m  (2.4). 

The given solution d e s c r i b e s  the flow as soc ia t ed  with the turning by a r ight  angle of a nonuniform s t r e a m  
with a speci f ied  twist ing law of the s t r e a m  in the c r o s s  sec t ions  x =y- -1  in the flow plane. 

Fo r  d2< Cla 2, having taken a 9.= (p2_q2)/(p~. +q2), we obtain 

Re (v) -- ch py ch px cns qy cos qx[tg qx th px(M tg qy --  N th py) --  (M th py -1- N tg qy)]; 

Be (u) = ch py ch px cos qy cos qx[tg qy th py(N th px -- M tg qx) ~ (M th px + N tg qx) 1, 

where  p and q a r e  found f r o m  (2.5); M = p ~ + / 3 q ;  and 

N = q i  r + ~ -  ~p, r = d~(p 2 -~- q2)/(p2_ q2)2_p2_~ q~, 

fi = - -  2pq. 

The solution given is in te rmedia te  between the solutions obtained for  C t < 0 and C~ > 0. It is evident 
f r o m  the re la t ions  given for  v and u that when p = 0  the complex  solution of (2.8) has the s a m e  f o r m  as does the 
r e a l  solution for  C1< 0; when q ~ ( 2 k  +1N/2,  k = 0 ,  1, ... , the solution of (2.3) changes into the r e a l  solution for  

C t>  O. 

w The solut ions der ived  r e p r e s e n t  flows of an ideal liquid nea r  an obstacle ,  w h i e h r e q u i r e  for  thei r  
p rac t i ca l  r ea i i za t ion  a co r respond ing  r e s t r i c t i o n  of the s t r e a m ,  including the sa t is fac t ion of vor t i c i ty  conditions,  
at a specif ied d is tance  f r o m  the obstacle .  Rotat ional  f lows a r e  of cons iderab le  in teres t .  Flows nea r  an obs tac le  
with prot ruding sepa ra t ing  par t i t ions  (flows in impactors )  and flows a r i s ing  in venti lat ion s y s t e m s ,  laminated  
heat exchangers ,  and s i m i l a r  s t r u c t u r e s  s e r v e  as physica l  analogs of  the solutions obtained in this e a se .  
Flows of this type occur  upon the interact ion of a number  of d i s c r e t e  jets  with an obs tac le ,  when the s t r e a m  is 
r e p e a t e d l y  slowed down on f ixed su r f aces  para l l e l  to the obs tac le ,  as ,  for  example ,  in the ca se  of jet cooling of 
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the in ter ior  cavi t ies  of turbine  vanes  or  in the case  of the motion of a liquid under the body of ve r t i ca l - t akeof f  
and - landing a i r c r a f t  and a i r - cush ion  devices .  

We note some  dis t inct ive f ea tu res  of the solutions obtained with applicat ion to the la t te r  p roblem.  

For  i r ro ta t iona l  flow the choice  of the value of the p a r a m e t e r  C in Eq. (1.4), and consequently,  the type 
of boundary  conditions on the su r faces  x = y = l ,  de t e rmines  the value of the ra t io  of the m a x i m u m  and min imum 
flow veloci t ies  on these  su r faces .  Having taken the m a x i m u m  value of the ve loc i ty  as unity, we obtain that for  
C < 0 (k = 1, 2 , . . .  ) this r a t io  v(1, 1)/v (0, 1) is  equal to cosh(37r/2), cosh(5rr/2), and so on. Thus for  the occu r rence  
ofk c i rcula t ion  zones at the su r face  of the b a r r i e r  it is n e c e s s a r y  in this case  to produce a flow which overf lows 
onto the obs tac le  with a m a x i m u m  c i r cumfe ren t i a l  veloci ty,  v(1, 1) ,which exceeds  by  a f ac to r  of c(~sh(2k +1) 
0r /2) /cosh  0r/2) the m a x i m u m  veloc i ty  in the exterf ial  flow; when the mot ion along the obs tac le  occurs  without 
the fo rmat ion  of c i rcu la t ion  zones (for a 0 ~ 0 and ak= 0, k=  1, 2 . . . .  ) the ra t io  v(1, 1)/v(0, 1) ~ eosh0r/2) .  The 
ve loc i ty  dis t r ibut ion with a c i r cum fe ren t i a l  m a x i m u m  is a typica l  d is t r ibut ion which a r i s e s  at the t runcat ion 
of a nozzle upon the in terac t ion  of the jet  with an obs tac le  within the b o r d e r s  of the ini t ial  sect ion of the jet .  
The applicat ion of d i s c r e t e  je t s  at sma l l  d i s tances  of the nozzle t runcat ion f r o m  an obs tac le  and for  a ra t io  
of the m a x i m u m  and m i n i m u m  veloc i t ies  at the nozzle  t runcat ion  of the o rde r  of  eosh (3_~/2) can, as  follows 
f rom the p re sen t  ana lys i s ,  r e s u l t  in developed rota t ional  mot ion of the liquid beneath  the su r f ace  of the nozzle 
t runcat ion .  

Just  as for  ro ta t ional  flow, vor t ex  flow nea r  an obs tac le  is de te rmined  by the type of boundary  conditions 
at the su r f ace s  x = y = l  and, as  follows f r o m  the p resen t  ana lys i s ,  depends on the choice of the value of the 
p a r a m e t e r  C 1 in Eqs. (2.3), which c h a r a c t e r i z e s  the s t r eng th  of the vor t ex  in the externa l  flow. Using the so lu-  
t ions obtained for  per iod!c  conditions on the su r f aces  x = ( 2 k + l ) ,  k = 0 ,  1, 2 . . . . .  for  the descr ip t ion  of the flow 
which occu r s  in the ca se  of the overf lowing along the n o r m a l  to the obs tac le  of a number  of  nonpara l le l  je ts ,  
we obtain that for  a s t r e a m  in the c r o s s  sect ion y = l  with ze ro  veloci ty  component  in the di rect ion of the ob- 
s tac le  (d=0) and for  C =0 and C 1 < 0, the s t reng th  of the vor tex  on the su r face  y = l  is equal to f~ (x, 1) =2 ~ / -C  1 
sin 4 - C l x  , where  d-Z--C-1 = ( -1 )k (2k+ l ) r /2 .  As k i n c r e a s e s ,  the m a x i m u m  value of f~ (x, 1) inc reases  by a fac tor  
of (2k +1) in compar i son  with ro ta t ional  flow. The choice of a sufficiently l a rge  number  of vo r t i ces  p e rmi t s  in 
this  case  r e p r e s e n t i n g  the flow in the region under d iscuss ion as some  model  , t u rbu len t ,  flow consis t ing of a 
s y s t e m  of vor t ex  pa r t i c l e s .  One can note that a s y s t e m  of k 2 vo r t i ces  was used in the case  of C = d  =0 and C1< 
0 in [3] for  the imitat ion of the turbulence  of f r e e  flow in the case  of flow around a plate  in the longitudinal 
direct ion.  
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