CIRCULATION FLOW OF AN IDEAL LIQUID NEAR WALLS

I. A. Belov UDC 532.517.43

§1. It is well known that in the case of the flow of accelerated streams near stationary boundaries the
effect of viscosity on the flow field appears at very small distances from the boundaries of the region being
discussed. In a significant portion of the region the flow may be taken to be ideal and irrotational or rotational
with the strength of the vortex determined by the conditions of formation of the stream far from the boundaries
of the region.

Let us consider in the Cartesian coordinate system xoy a two-dimensional flow of an incompressible
liquid near solid walls or the symmetry plane x=0 and y =0 with the point of flow stagnation being x=y=0. Let
X« and Yo be the specified cross sections with fixed boundary conditions subject to determination. Let us seek
a solution for the flow velocity components in the form

v=—FyP'(), u=F(yd@), (1.1)

where v and u are the velocity components along the normal and along the tangent to the surface y =0, referred
to the characteristic velocity at the boundary y,. The obvious boundary conditions for the problem under dis-
cussion are

v(z, 0) = 0, F(0) = 0; u(0, y) = 0; ) = 0. (1.2)

It follows from (1.1) that with the boundary conditions (1.2) the velocity flux through the surface bounding the
region under discussion is equal to zero for any values of the functions F and & at the boundaries y., and Xe.
We assume that max|v(x, ¥, ) |=max|u(x,, y)| . From this we obtain from (1.1), excluding the conditions F (y.,) =
& (X0) =0, which give trivial solutions,

@ (o) = F (Yoo) Orn/ Finy (1.3)
where

®©,,/Fp, = const, (@, F'), = max (@, F').

Without losing the generality of the discussions, we adopt X« =y« =1, Where the length of the side of the
square z, y & 10,1] is used as the characteristic length. The condition of the absence of a vortex in the flow is
written in the form

FOFE'IF + @"/D) = 0,
Excluding the trivial solutions F=¢ =0, we obtain
F'IF = — @"/® = C. 1.4

For C=0 there follows from (1.4) the well-known solution for a uniform flow in the vicinity of the stagna-
tion point [1] F=C,y, & =Cyx; v=-by, u=bx, where C;=F (1); C;=& (1); and b=C,C, is the gradient of the velocity
at the stagnation point.

For C < 0 the solutions (1.4) have the form F=C, sin Vv -Cy, & =C, sinh v =Cx, where C;=F@)/sin v-C
and Cy=4 (1) /sinh v -C.

In this case we obtain from (1.3) the following equation for the determination of the values of v —Cs
7 sin Y — C-ch V — Cxp/(sh V' — C-cos 1/ — Cyp) = 1,
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where xm and yp, are the cross sections at which ®'=9',, and F'=F'y,, respectively. We note that the roots of
this equation agree in size with the roots of the equation &';,,/F';, =1 in the case in which F(1)=¢(1). Having
adopted in the following C,=a, where a =F(1) =# (1), we determine the constants v —C and Cyas

V' —=C =(—1)2k + 1)n/2, Cy = (—1)ra/sh(2k + 1)u/2, k= 0,1, ...,

which satisfy (1.3) to a high degree of accuracy for k> 0. For selected values of v —-C, Cy, and C, the solutions
for F and & are of the form

F = (—1)rasin(2k + 1) (n/2)y, @ = ash(2k + 1) (2/2)z/sh(2k + 1)x/2.
Similar expressions are obtained for C > 0:

F = ash(2k + 1)(w/2)y/sh 2k + 1)x/2, @ = (—1)* asin(@k + 1)(/2)z.
The stream function of the flow in qQuestion has the form

Y = (— 1)ka® sh(2k 4- 1)'(:n/2)z sin(2k - 1)(:;/2)glsh(2k +'1)n/2,
=2z, L=y, C<0; 2=y, L=z C>0

for C=0. We note that the sums of the solutions of the type indicated above for C=0 and CZ 0 are also solu-
tions of Eq. (1.4) with the boundary conditions (1.2) and (1.3). Let us investigate particular solutions of (1.4)
for C=0. The boundary conditions’ on the surfaces x=y =1 on the assumption that a 2=g =tanh (2k --1) % /
2k + 1) —g— - are of the form
v(z, 1) = — ch(2k + 1)(wW/2)a/ch 2k + /2, u(z, 1) = 0,
(1, y) = (—1)=+ sin (2k + 1)(n/2)y,
u(1, y) = (—1r th (2k + 1)(5/2) cos (2k - 1)(n/2)y

for sufficiently large values of k and for C < 0, where the maximum velocity at the boundary y=1 is v(1, 1) =1;
and the ratio of v(1, 1) to the minimum velocity on the same boundary v(0, 1) is equal to cosh 2k +1)7/2. Simi-
lar relations are obtained for C > 0. Having taken the same value for a2 as in the preceding case, the boundary
conditions on the surfaces x=y=1 are written in the form

v(z, 1) = (—1)*+ th(2k + 1)(/2) cos (2k + 1)(n/2)z,
u(z, 1) = (—1ksin 2k + 1)(®/z, v, y) = 0,
u(l, y) = ch (2k + D(=/2y/ch 2k -+ 1)n/2
for sufficiently large values of k, where the maximum velocity on the boundary x=1 is u(1, 1) =1, and the ratio
of u(1, 1) to the minimum velocity on this boundary u (1, 0) is equal to cosh (2k +1)x/2.

It follows from a comparison of the solutions obtained that when C < 0 the velocities v(x, 1, u, 1),
u(1, y), and v(1, y) are equal in absolute value to the velocities u(1, y), v(1, y), v(x, 1), and u{x, 1), respectively,
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i.e., the solution for C < 0 in the region z, y = [0, 1] is coupled with the solution for C>0 in the region
re 1,2,y [0, 1], and for C> 0 in the region », y < [0, 11— with the solution for C <0 in the region

ze U, 2], y = [0, 1]. The possibility of coupling of the solutions is provided for by the choice as the boundary
conditions on the surfaces x=y=1 of the periodicity conditions of the flow, whose appearance is caused by the
solid wall or the symmetry plane ¢the plane of interaction of the two flows) located beneath the flow. This will
be the plane x=2 for the region z, y = [0, 11; for the region z < [1, 2], y € [0, 1)— the y =2 plane, and so on.
When a ;=0 and a. =0 (k=1, 2,...) (Fig. 1a), the flow in the region under discussion is accomplished without
the formation of circulation zones near the walls, and when ¢,=0 and ¢} =0 (k=1, 2,...) - with circulation
zones (the y =0 lines intersect with the surfaces x=y=1 at the points X, y, =2n/ 2k +1); X, Yo=1, k=1,2 ...,
n =1, 2,..., k). The number of circulation zones corresponds to the selected value of k; when C < 0 and k=1
(Fig. 1b) the circulation zone for the flow in the region z, y & [0, 1] is oriented along the wall y =0, and when
C> 0 and k=1 (Fig. 1lc), the circulation zone for the flow in this same region is oriented along the normal to
the wall y=0.

§2. Let the vorticity in the flow of an ideal liquid be nonzero in the region z, y = [0, 11, In the present
formulation the amount of vorticity is determined by the effects of the viscosity of the liquid outside the bound-
aries of the region under discussion. As earlier for irrotational flow, adopting dependences of v and u of the
form (1.1), which guarantee fulfillment of the Stokes' theorem, we obtain from the vorticity transport eguation

(FF"" — F'F")FF = (@D — ®'®")/0D' = C. 2.1)
The solutions of (2.1) in the case of the boundary conditions
F0) = ®0) =0, F(1) = ®(1) = a, F' (1) = d'1) =d @.2)

were investigated in [2] for Cs 0. We will show that in the general case one should take account of the solutions
which describe circulation flows of a liquid in the region under discussion in addition to those obtained in [2].
When C=0, it follows from (2.1) that

P2 =0C, + g% Co=d — Cya?, C; = ¢"'(1), 9= F, ©.
When P=C,a%/(Ca?-d%)s 0, the solution for ¢ is of the form
¢la =132, a=d, P =0
gla = V(Ca® — d)/Cia®-sin Y —Cyz, P >0; . (2.3) ‘
gla = VY (C1a>*—d?)/Cya®-sh Y Ciz, P <0, z2=12, ¥,
i.e., when C;=0 and P> 0, we have an unbounded set of real solutions for ¢, and when C; =0 and P< 0, an

infinite number of real solutions is attained only when d2= Cia 2, The quantity C, depends on the ratio d/a =
@' (1) /p (1), and for the conditions (2.2) it is determined from

d’= — Cia®’ etg® VY —Cy, P >0,
# = Cyacth? 1/ Cy, P < 0. @.4)

If ¢ ' (1) =d is taken equal to zero, then when P> 0 the roots of Eq. (2.4) will be v -C,;=(- l)k(2k+1) /2,
k=0, 1,... for negative values of C;; when P< 0 and d=0, there are no real roots V/E of Eq. (2.4) on the posi-
tive part of the number axis. When d/a =1, v —C;=0, 4.4934, 7.7253, 10.9041, 14.0662, and so on, but \/-C_1=0.
When C,;=0, the solution (2.4) gives d/ =1, which corresponds to the case analyzed above of the flow of an ir-
rotational stream in the neighborhood of the stagnation point.

When d?< Cya 2, we have a complex solution for ¢ . Setting viC,=p +iq, we obtain from (2.4) two real equa-
tions for p and g:

pothp + pthp = qtgq—getgq = Cy, (2.5)
where Cy is some constant which determines the value of the ratio d/a for each pair of roots (p, 9).

It is obvious from (2.5) that one of the values of the number p corresponds to k different values of the
number q. For larger values of p the constant C;— 2p, and q — 2k +1) 7/2, k=0, 1,.... Letusrewrite (2.5) in
the form '

dla -+ q/tg g . Py __d/a“q/t'gq —
th?p = — m(d/d>0), thp= _——_qtgq—-d/a (d/a \0)

It follows from the last relations that solutions (p, q) occur for d/Zs 0 and tan ¢ < 0 with g taken from the
range:
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F(dlaytg g < g < F (dla) tg g; F (dla) tg ¢ < ¢ < F (dla)/ g q.

When dia = - 15/2<<q<<2;37/2<q<4.9,2.8<q<7, 6.12<q< 27, and so on. Since 0 =<p <, let us determine
the boundaries with respect to d4 of the existence of complex solutions for ¢. When p— =, d/a =z q(tan’q +1)/
(2 tan q); when p=0 d/a =+ q/tan q. If one takes q=0, then when p— =, d/2 =+ 0.5, and when p=0, d/za =+ 1.
The last limit corresponds to C;=0, and consequently the condition d2/g2< C, of the existence of complex solu-

tions of (2.3) is not fulfilled. It is possible to obtain that in this case the quantity p is located in the range
0.725 =p <,

The solution for ¢ when VC,=p+iq is of the form

g/a = [(Ap + Bq) + i(Bp — Aq)] sh pz cos gz + [(A9 — Bp) 4 i(Ap + Bg)] ch pz sin gz,
where

A @EVETP o ot VETH
(P—y vz ' P—eyz
a = d/e® — p* + ¢%, P = —2pg.
We note that just as for irrotational flow the sums of the solutions in question are, in the case of real C;Z 0,
C4=0, and complex values of Cy4, solutions of Eq. (2.3) with the boundary conditions (2.2). Let us investigate
particular solutions of (2.8). Having taken q2=sin?v'—C,/V —C,, we obtain

v==38in Y —Ciycos Y —Cyx, u = sin Y —Cyz cos YV —Cyy

for Cy< 0, where Cy=C,(a, d) is found from (2.4). If d=0, then v —C;=(~1)¥@2k +1)7/2, k=0, 1, ... , and then
for different values of k the flow in the region z, y = [0, 1] under discussion represents a flow associated with
the turning by a right angle of a nonumiform stream oriented along the normal to the plane y =0 without the for-
mation of circulation zones (=0, Fig. 2a) and with circulation zones (k =1, Fig. 2b; k=2, Fig. 2¢). The ap-
pearance of circulation zones within the borders of the region under discussion, just as for irrotational flow,
which is caused by the periodicity conditions of the flow on the boundaries x=y=1. The number of circulation
zones (vortices) and the distance between the centers of adjacent vortices are equal to k?and 2/@2k +1), re-
spectively; the distance between the planes x, y =0 and the center of the vortex nearest to the stagnation point
is equal to x, y=1/(2k +1).

For C,;> 0 and d%> Cya?, having taken @ 2=sinh’>vVC;/VC;, we obtain
=—sh 1/ CychV Cyz, u =ch VY Cyysh Y Cz,

where C;=Cj(a, d) is found from (2.4).

The given solution describes the flow associated with the turning by a right angle of a nonuniform stream
with a specified twisting law of the stream in the cross sections x=y =1 in the flow plane.

For d?< Cya2, having taken a2?=(?-q%/(p?+q?, we obtain
Re (1) = ch py ch pz cos gy cos gzlig gz th pz(M tg qy — N th py) — (M thpy + N ig qp);

Re (1) = ch py ch pz cos gy cos gzltg gy th py(N th pr — M tg gz) + (M th pz + N tg g2)],
where p and q are found from (2.5); M=p\/'a2+ﬁz+ﬁq; and

N=gqVea+pt—pp, a=2dp*+ @p*—¢)*—p*+ ¢,
f =-— 2pq.

The solution given is intermediate between the solutions obtained for C;< 0 and C;>0. It is evident
from the relations given for v and u that when p=0 the complex solution of (2.3) has the same form as does the
real solution for C, < 0; when ¢ —(2k +1)n/2, k=0, 1,..., the solution of (2.3) changes into the real solution for
C;> 0.

83. The solutions derived represent flows of an ideal liquid near an obstacle, which require for their
practical realization a corresponding restriction of the stream, including the satisfaction of vorticity conditions,
at a specified distance from the obstacle. Rotational flows are of considerable interest. Flows near an obstacle
with protruding separating partitions (flows in impactors) and flows arising in ventilation systems, laminated
heat exchangers, and similar structures serve as physical analogs of the solutions obtained in this case.
Tlows of this type occur upon the interaction of a number of discrete jets with an obstacle, when the stream is
repeatedly slowed down on fixed surfaces parallel to the obstacle, as, for example, in the case of jet cooling of
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the interior cavities of turbine vanes or in the case of the motion of a liquid under the body of vertical-takeoff
and -landing aircraft and air-cushion devices.

We note some distinctive features of the solutions obtained with application to the latter problem.

For irrotational flow the choice of the value of the parameter C in Eq. (1.4), and consequently, the type
of boundary conditions on the surfaces x=y=1, determines the value of the ratio of the maximum and minimum
flow velocities on these surfaces. Having taken the maximum value of the velocity as unity, we obtain that for
C<0 k=1, 2,...) this ratio v(1, 1)/v (0, 1) is equal to cosh(37/2), cosh(57/2), and so on. Thus for the occurrence
of k circulation zones at the surface of the barrier it is necessary in this case toproduce a flow which overflows
onto the obstacle with a maximum circumferential velocity, v(1,1), which exceeds by a factor of cosh(2k +1)
(/2)/cosh (1/2) the maximum velocity in the external flow; when the motion along the obstacle occurs without
the formation of circulation zones (for @;=0 and a;.=0, k=1, 2, ...) the ratio v(1, 1)/v(0, 1) = cosh(r/2). The
velocity distribution with a circumferential maximum is a typical distribution which arises at the truncation
of a nozzle upon the interaction of the jet with an obstacle within the borders of the initial section of the jet.
The application of discrete jets at small distances of the nozzle truncation from an obstacle and for a ratio
of the maximum and minimum velocities at the nozzle truncation of the order of cosh (37/ 2} can, as follows
from the present analysis, result in developed rotational motion of the liquid beneath the surface of the nozzle
truncation,

Just as for rotational flow, vortex flow near an obstacle is determined by the type of boundary conditions
at the surfaces x=y=1 and, as follows from the present analysis, depends on the choice of the value of the
parameter C,; in Egs. (2.3), which characterizes the strength of the vortex in the external flow. Using the solu-
tions obtained for periodic conditions on the surfaces x=(@2k +1), k=0, 1, 2,..., for the description of the flow
which occurs in the case of the overflowing along the normal to the obstacle of a number of nonparallel jets,
we obtain that for a stream in the cross section y=1 with zero velocity component in the direction of the ob-
stacle (d=0) and for C=0 and C,; < 0, the strength of the vortex on the surface y=1 is equal to Q (x, 1) =2V -Cy
sin V—C;x, where v -C, = (—l)k(2k+1)1r/2 As k increases, the maximum value of Q (x, 1) increases by a factor
of (2k +1) in comparison with rotational flow. The choice of a sufficiently large number of vortices permits in
this case representing the flow in the region under discussion as some model "turbulent" flow consisting of a
system of vortex particles. One can note that a system of k2 vortices was used in the case of C=d =0 and Ci<
0 in [3] for the imitation of the turbulence of free flow in the case of flow around a plate in the longitudinal
direction.
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